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Abstract

Single-language runtime systems, in the form of
Java virtual machines, are widely deployed plat-
forms for executing untrusted mobile code. These
runtimes provide some of the features that oper-
ating systems provide: inter-application memory
protection and basic system services. They do not,
however, provide the ability to isolate applications
from each other, or limit their resource consump-
tion. This paper describes KaffeOS, a system that
provides these features for a Java runtime. The Kaf-
feOS architecture takes many lessons from operat-
ing system design, such as the use of a user/kernel
boundary.

The KaffeOS architecture supports the OS ab-
straction of a process in a Java virtual machine.
Each process executes as if it were run in its own
virtual machine, including separate garbage collec-
tion of its own heap. The difficulty in designing
KaffeOS lay in balancing the goals of isolation and
resource management against the goal of allow-
ing direct sharing. Overall, KaffeOS is up to 11%
slower than the freely available JVM on which it is
based, which is an acceptable penalty for the safety
that it provides. KaffeOS is substantially slower
than commercial JVMs, but exhibits much better
performance scaling in the presence of uncoopera-
tive code.

This research was largely supported by the Defense Ad-
vanced Research Projects Agency, monitored by the Air Force
Research Laboratory, Rome Research Site, USAF, under
agreements F30602–96–2–0269 and F30602–99–1–0503.

1 Introduction

The need to support the safe execution of un-
trusted programs in runtime systems for type-safe
languages has become clear. Language runtimes
are being used in environments for executing un-
trusted code: for example, applets, servlets, active
packets [38], database queries [13], and kernel ex-
tensions [5]. Current systems (such as Java) pro-
vide memory protection through the enforcement
of type safety and secure system services through a
number of mechanisms, including namespace and
access control. Unfortunately, malicious or buggy
applications can deny service to other applications.
For example, a Java applet could generate exces-
sive amounts of garbage and cause a Web browser
to spend all of its time collecting dead objects.

To support the execution of untrusted code, type-
safe language runtimes need to provide mecha-
nisms to isolate and manage the resources of appli-
cations, analogous to those provided by operating
systems. Although other resource management ab-
stractions exist [3], the classic OS process abstrac-
tion seems appropriate. A process is the basic unit
of resource ownership and control; it provides iso-
lation between applications. On a traditional op-
erating system, untrusted code can be forked as
its own process; CPU and memory limits can be
placed on the process, and the process can be killed
if it is uncooperative. Current type-safe language
runtimes do not support such functionality.

A number of approaches to isolating applications
in Java have been developed by others over the last
few years. An applet context [7] is an example
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of an application-specific approach. It provides a
separate namespace and a separate set of execution
permissions for untrusted applets. Applet contexts
do not support resource management, and cannot
defend against denial-of-service attacks. In addi-
tion, they are not general: applet contexts are spe-
cific to applets, and cannot be used easily in other
environments.

Several general-purpose models for managing
resources in Java exist, such as the J-Kernel [21]
or Echidna [19]. However, these solutions super-
impose an operating system kernel on Java without
changing the underlying virtual machine. As a re-
sult, it is impossible in those systems to account for
resources spent on behalf of a given application: for
example, CPU time spent while garbage collecting
a process’ heap.

An alternative approach to achieve isolation be-
tween different applications is to give each one its
own virtual machine, and run each virtual machine
in a different process in an underlying OS [23, 27].
For instance, most operating systems can limit a
process’s heap size or CPU consumption. Such
mechanisms could be used to directly limit an en-
tire VM’s resource consumption, but they depend
on underlying operating system support.

Designing JVMs to support multiple processes
is a superior approach. First, it reduces per-
application overhead. For example, applications on
KaffeOS can share classes in the same way that an
OS allows applications to share libraries. Second,
communication between processes can be more ef-
ficient in one VM, since objects can be shared di-
rectly. (One of the reasons for using type-safe lan-
guage technology in systems such as SPIN [5] was
to reduce the cost of IPC; we want to keep that
goal.) Third, embedding a JVM in a larger process,
such as a web server or web browser, is difficult
(or impossible) if the JVM relies on an operating
system to isolate different activities. Fourth, em-
bedded or portable devices may not provide OS or
hardware support for managing processes. Finally,
a single JVM uses less energy than multiple JVM’s
on portable devices [17].

Our work consists of supporting processes in a
modern type-safe language, Java. Our solution,

KaffeOS, adds a process model to Java that allows
a JVM to run multiple untrusted programs safely,
and still support the direct sharing of resources be-
tween programs. The difficulty in designing Kaf-
feOS lay in balancing conflicting goals: process
isolation and resource management versus direct
sharing of objects between processes.

A KaffeOS process is a general-purpose mecha-
nism that can easily be used in multiple application
domains. For instance, KaffeOS could be used in a
browser to support multiple applets, within a server
to support multiple servlets, or even to provide a
standalone “Java OS” on bare hardware. We have
structured our abstractions and APIs so that they
are as broadly applicable as possible, much as the
OS process abstraction is. Because the KaffeOS
architecture is designed to support processes, we
have taken lessons from the design of traditional
operating systems, such as the use of a user/kernel
boundary.

Our design makes KaffeOS’s isolation and re-
source control mechanisms comprehensive. We fo-
cus on the management of CPU time and memory,
although we plan to address other resources such as
network bandwidth. The runtime system is able to
account for and control all of the CPU and mem-
ory resources consumed on behalf of any process.
We have dealt with these issues by structuring the
KaffeOS virtual machine so that it separates the re-
sources used by different processes.

To summarize, this paper makes the following
contributions:

� We describe how lessons from building tra-
ditional operating systems can and should be
used to structure runtime systems for type-safe
languages.

� We describe how software mechanisms in the
compiler and runtime can be used to imple-
ment isolation and resource management in a
Java virtual machine.

� We describe the design and implementation
of KaffeOS. KaffeOS implements our pro-
cess model in Java, which isolates applications
from each other, provides resource manage-
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ment mechanisms for them, and also lets them
share resources directly.

� We show that the performance penalty for us-
ing KaffeOS is reasonable, compared to the
freely available JVM on which it is based.
Even though KaffeOS is substantially slower
than commercial JVMs, it exhibits much bet-
ter performance scaling in the presence of un-
cooperative code.

Sections 2 and 3 describe the design and im-
plementation of KaffeOS, respectively. Section 4
provides some performance measurements of Kaf-
feOS, and compares its performance with that of
some commercial Java virtual machines. Section 5
describes related work in more detail, and Section 6
summarizes our conclusions and results.

2 Design Principles

The following principles drove our design of
KaffeOS, in decreasing order of importance:

� Process separation. We provide the “clas-
sical” property of a process: each process is
given the illusion of having the whole virtual
machine to itself.

� Safe termination of processes. Processes
may terminate abruptly due to either an inter-
nal error or an external event. In both cases,
we ensure that the integrity of other processes
and the system itself is not violated.

� Direct sharing between processes. Processes
can directly share objects in order to commu-
nicate with each other.

� Precise memory and CPU accounting. The
memory and CPU time spent on almost all ac-
tivities can be attributed to the application on
whose behalf it was expended.

� Full reclamation of memory. When a pro-
cess is terminated, its memory must be fully
reclaimed. In a language-based system, mem-
ory cannot be revoked by unmapping pages: it

must be garbage-collected. We restrict a pro-
cess’ heap writes to avoid uncollectable mem-
ory in the presence of direct object sharing.

� Hierarchical memory management. Mem-
ory allocation can be managed in a hierarchy,
which provides a simple model for controlling
processes.

The interaction between these design principles is
complex. For expository purposes, we discuss
these principles in a slightly different order in the
remainder of this section.

Process separation. A process cannot acciden-
tally or intentionally access another process’ data,
because each process has its own heap. Each pro-
cess is given its own name space for its objects, as
well. Type safety provides memory protection, so
that a process cannot access other processes’ ob-
jects.

To ensure process separation, an untrusted pro-
cess is not allowed to hold onto system-level re-
sources indefinitely. For instance, global kernel
locks are not directly accessible to user processes.
Violations of this restriction are instances of bad
system design. Similarly, faults in one process
must not impact progress in other processes.

Safe termination of processes. KaffeOS is
structured such that critical parts of the system
cannot be damaged when a process is terminated.
For example, a process is not allowed to terminate
when it is holding a lock on a system resource.

We divide KaffeOS into user and kernel parts [1],
an important distinction used in operating system
design. A user/kernel distinction is necessary to
maintain system integrity in the presence of process
termination. Others have suggested that depend-
ing on language-level exception handling is insuf-
ficient. We disagree, because exceptions interact
poorly with code in critical sections.

Figure 1 illustrates the high-level structure of
KaffeOS. User code executes in “user mode,” as do
some of the trusted runtime libraries and some of
the garbage collection code. The remaining parts
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User mode

User code (untrusted)

Kernel code (trusted)

Runtime Libraries
(trusted)

User
GC

GC
System

Kernel mode

Figure 1: Structure of KaffeOS. System code is divided
into kernel and user modes; user code all runs in user
mode. In user mode, code can be terminated arbitrarily;
in kernel mode, code cannot be terminated arbitrarily.

of the system (the rest of the runtime libraries and
the garbage collector, as well as the virtual machine
itself) must run in kernel mode to ensure their in-
tegrity. Note that “user mode” and “kernel mode”
do not indicate a change in hardware privileges. In-
stead, they indicate different environments with re-
spect to termination and resource consumption:

� Processes running in user mode can be ter-
minated at will. Processes running in ker-
nel mode cannot be terminated at an arbitrary
time, because they must leave the kernel in a
clean state.

� Resources consumed in user mode are always
charged to a user process, and not to the sys-
tem as a whole. Only in kernel mode can a
process consume resources that are charged to
the entire system, although typically such use
is charged to the appropriate user process.

Such a structure echoes that of exokernels [16],
where system-level code executes as a user-mode
library. Note that a language-based system allows
the kernel to trust user-mode code to a great extent,
because type safety prevents user code from dam-
aging any user-mode system code.

The KaffeOS kernel is structured so that it can
handle termination requests and internal errors
cleanly. Termination requests are deferred, so that
a process cannot be terminated while manipulat-
ing kernel data structures. Kernel code does not
abruptly terminate due to internal exceptions, for

the same reason. Violations of these two restric-
tions are considered kernel bugs.

Full reclamation of memory. Since Java is type-
safe, it does not provide a primitive to reclaim
memory. Instead, unreachable memory is freed by
a garbage collector. We use the garbage collector to
recover all the memory of a process when it termi-
nates. Therefore, we must prevent situations where
the collector cannot free a terminated process’ ob-
jects because another process still holds references
to them.

We use techniques from distributed garbage col-
lection schemes [29] to restrict cross-process refer-
ences, although we use them to very different ef-
fect. Distributed GC seeks to overcome the phys-
ical separation of machines and create the impres-
sion of a global shared heap. We use distributed
GC mechanisms to manage multiple heaps in a sin-
gle address space, so that they can be collected in-
dependently.

We use write barriers [40] to restrict writes.
A write barrier is a check that happens on ev-
ery pointer write to the heap. As we show in
Section 4, the cost of using write barriers, al-
though non-negligible, is reasonable. Illegal cross-
references are those that would prevent a process’
memory from being reclaimed: for example, refer-
ences from one user heap to another. Since those
references cannot exist, it is possible to reclaim a
process’ heap as soon as the process is terminated.
Writes that would create illegal cross-references
are forbidden, and raise exceptions. We call such
exceptions “segmentation violations.” Although it
may seem surprising that a type-safe language run-
time could throw such a fault, it actually closely
follows the analogy to traditional operating sys-
tems.

Unlike distributed garbage collection, in Kaf-
feOS inter-heap cycles are not an issue. The only
form of inter-heap cycles that can occur are due to
data structures that are split between a user heap
and the kernel heap, since there can be no cy-
cles that span multiple user heaps. Writes of user-
heap references to kernel objects can only be done
by trusted code. The kernel is coded so that it
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only writes a user-heap reference to a kernel ob-
ject whose lifetime equals that of the user process:
for example, the object that represents the process
itself.

KaffeOS is intended to run on a wide range of
systems. We do not assume that the platforms
on which it runs will necessarily have a hardware
memory management unit under the control of Kaf-
feOS. Neither do we assume that the host has an
operating system that supports virtual memory. For
example, a Palm Pilot violates both of these as-
sumptions. Without these assumptions, memory
can not simply be revoked by unmapping it.

Precise memory and CPU accounting. We ac-
count for memory and CPU on a per-process basis,
so as to limit their consumption by buggy or pos-
sibly malicious code. In order to prevent denial-
of-service attacks, it is necessary to minimize the
amount of time and memory spent servicing kernel
requests.

Memory accounting is complete. It applies not
only to objects at the Java level, but to all allo-
cations done in the VM on behalf of a given pro-
cess. In contrast, bytecode-rewriting approaches
that do not modify the virtual machine, such as
Jres [11, 12], can only account for object alloca-
tions.

We try to minimize the number of objects that are
allocated on the kernel heap through careful coding
of the kernel interfaces. For instance, consider a
system call that creates a new process with a new
heap: the process object itself, which is large, is
allocated on the new heap. The handle that is re-
turned to the creating process to control the new
process is allocated on the creating process’ heap.
The kernel heap only maintains a small entry in a
process table.

We increase the accuracy of CPU accounting by
minimizing the time spent in non-preemptible sec-
tions of code. In addition, distributed GC also sep-
arates the garbage collection of the user heaps and
the kernel heap. We again use write barriers to de-
tect cross-references from a user to the kernel heap,
and vice versa. For each such reference, we create
an entry item in the heap to which it points [29]. In

user process heaps

shared heaps

kernel heap

Figure 2: Heap structure in KaffeOS. The kernel heap
can contain pointers into the user heaps, but the shared
heaps and other user heaps cannot. User heaps can con-
tain pointers into the kernel heap and shared heaps.

addition, we create a special exit item in the orig-
inal heap to remember the entry item created in
the destination heap. Unlike distributed object sys-
tems such as Emerald [24], entry and exit items are
not used for naming non-local objects; we only use
them to decouple the garbage collection of different
heaps.

Entry items are reference counted: they keep
track of the number of exit items that point to
them. The reference count of an entry item is decre-
mented when an exit item is garbage collected.
If an entry item’s reference count reaches zero,
the entry item is removed, and the referenced ob-
ject can be garbage collected if it is not reachable
through some other path.

A process’ memory is reclaimed upon termina-
tion by merging its heap with the kernel heap. All
exit items are destroyed at this point and the cor-
responding entry items are updated. The kernel
heap’s collector can then collect all of the memory,
including memory on the kernel heap that was kept
alive by the process. User-kernel cycles of garbage
objects can be collected at this time.

5



Direct sharing between processes. One of the
reasons for using a language-based system is to
allow for direct communication between applica-
tions. For example, the SPIN operating system al-
lowed kernel extensions to communicate directly
through pointers to memory. The design of Kaf-
feOS retains this design principle. Figure 2 shows
the different heaps in KaffeOS, and the kinds of
inter-heap pointers that are legal.

In KaffeOS, a process can dynamically create a
shared heap to communicate with other processes.
Objects allocated in a shared heap are restricted:
their non-primitive fields (i.e., pointer fields) can-
not be reassigned after initialization. Only the
primitive fields in a shared object are mutable. This
restriction is enforced by write barriers.

A shared heap has the following lifecycle. First,
one process picks one or more shared types out of
a central shared namespace, creates the heap and
loads the shared class or classes into it. While the
heap is being created, the creator is charged for
the whole heap. After the heap is populated with
classes and objects, it is frozen and its size remains
fixed for its lifetime. If other processes look up the
shared heap, they are charged that amount. In this
way, all sharers are charged for the heap. Processes
exchange data by writing into and reading from the
shared objects and by synchronizing on them in the
usual way.

If a process drops all references to a shared heap,
all exit items to that shared heap become unreach-
able. After the process garbage collects the last exit
item to a shared heap, that shared heap’s memory is
credited to the sharer’s budget. When the last sharer
drops all references to a shared heap, the shared
heap becomes orphaned. The kernel garbage col-
lector checks for orphaned shared heaps at the be-
ginning of each GC cycle and merges them into the
kernel heap.

This model guarantees three properties:

� All sharers are charged in full for a shared
heap while they are holding onto the shared
heap. As a result, sharers do not have to
be charged asynchronously if another sharer
exits. (If � sharers were each to pay only
��� of the cost of a shared heap, when one

sharer exited the others would have to be asyn-
chronously charged ����� ��� ����� of the
cost.)

� One process cannot use a shared object to
keep objects in another process alive. Mak-
ing the non-primitive fields of shared objects
immutable is the simplest means of enforcing
this restriction.

� Sharers are charged accurately for all meta-
data, such as internal class data structures.
The metadata is also allocated on the shared
heap.

Although we ensure that process heaps can be
scanned independently during GC, thread stacks
still need to be scanned during GC for inter-heap
references. Incremental schemes could be used
to eliminate repeated scans of a stack [10], and a
thread does not need to be scanned more than once
while it is suspended. Some “GC crosstalk” be-
tween processes is still possible, because a process
could create many threads in an effort to get the
system to scan them all. We decided that the ben-
efit of allowing direct sharing between processes is
worth leaving open such a possibility.

Hierarchical memory management. We pro-
vide a simple hierarchical model for managing
memory. Each heap is associated with a memlimit,
which consists of an upper limit and a current use.
Memlimits form a hierarchy: each one has a par-
ent, except for a root memlimit. All memory al-
located to the heap is debited from that memlimit,
and memory collected from that heap is credited to
the memlimit. This process of crediting/debiting is
applied recursively to the node’s parents.

A memlimit can be hard or soft. This attribute
influences how credits and debits percolate up the
hierarchy of memlimits. A hard memlimit’s maxi-
mum limit is immediately debited from its parent,
which amounts to setting memory aside. Credits
and debits are therefore not propagated past a hard
limit. A soft memlimit’s maximum limit, on the
other hand, is just a limit—credits and debits of a
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soft memlimit’s current usage are reflected in the
parent.

Hard and soft limits allow different memory
management strategies. Hard limits allow for mem-
ory reservations, but incur inefficient memory use if
the limits are not used. Memory consumption mat-
ters, because we do not assume there is an under-
lying operating system; as a result, KaffeOS may
manage physical memory. Soft limits allow the set-
ting of a summary limit for multiple activities with-
out incurring the inefficiences of hard limits. They
can be used to guard malicious or buggy applica-
tions where temporarily high memory usage can be
tolerated.

Another application of soft limits is during the
creation of shared heaps. Those heaps are initially
associated with a soft memlimit that is a child of
the current process heap’s memlimit. In this way,
they are separately accounted but still subject to
their creator’s memlimit, which ensures that they
cannot grow to exceed their creator’s ability to pay.

3 Implementation Issues

The KaffeOS VM is built on top of the freely
available Kaffe virtual machine, version 1.0b4 [39],
which is roughly equivalent to JDK 1.1. In this sec-
tion, we describe the Java-specific issues that had to
be dealt with in implementing KaffeOS. Many im-
plementation decisions were driven by the goal of
modifying Java as little as possible.

The primary purpose of KaffeOS is to run Java
applications, which expect a well-defined environ-
ment of run-time services and libraries. We provide
the standard Java API within KaffeOS.

We make use of various features of Java to sup-
port KaffeOS processes: Java class loaders, in par-
ticular, deserve some discussion. We also discuss
some of the changes to the Java runtime. Finally,
we discuss some aspects of the Kaffe implementa-
tion that affect the performance that we can achieve
with our KaffeOS prototype.

3.1 Namespaces

Separate namespaces are provided in Java
through the use of class loaders [26]. A class loader
is an object that acts as a name server for classes.

We use the Java class loading mechanism to pro-
vide KaffeOS processes with different namespaces.
This use of Java class loaders is not novel, but is
important because we have tried to make use of ex-
isting Java mechanisms when possible. When we
use standard Java mechanisms, we can easily en-
sure that we do not violate the language semantics.

KaffeOS also uses class loaders to manage the
namespace of shared objects. Process loaders dele-
gate the loading of shared class to a shared loader,
which means that all shared objects have well-
understood types for all user processes. If we were
not able to use delegation, KaffeOS would need
to support a much more complicated type system.
On the downside, the shared namespace becomes
a global resource, which is harder to account for
precisely.

3.2 Java Class Libraries

We examined each class in the Java standard li-
braries [8] to see how it interacted under the se-
mantics of class loading. A class’s members and
their associated code are described by a sequence
of bytes in a class file. Classes from identical class
files that are loaded [26] by different class loaders
are defined to be different in Java, although they
have may identical behavior relative to the names-
pace defined by the loader that loaded them. We
refer to such classes as reloaded classes. Reloading
a class gives each instance its own copies of static
fields. In KaffeOS, Java classes could be reloaded;
they could be modified to be shared across pro-
cesses; or they could be used unchanged. For each
class, we decided which alternative to choose, sub-
ject to two goals: to share as many classes as possi-
ble, but to make as few code changes as necessary.

Certain classes must be shared between pro-
cesses to support the use of the shared heaps or
the kernel heap. By “shared class,” we mean that
the class is the same in both processes, and that the
text is shared. If the class uses statics, these statics
must be replaced with process-aware implementa-
tions if they cannot be eliminated. For example, the
java.lang.Object class, which is the super-
class of all object types, must be shared. If this type
were not shared, it would not be possible for differ-
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ent processes to share generic objects! Because of
some details of Java class loading, globally shared
classes cannot directly refer to reloaded classes.

Non-shared classes should always be reloaded,
so that each process gets its own instance.
Reloaded classes do not share text in our cur-
rent implementation, although they could. Be-
cause of some unfortunate decisions in the Java
API design, some classes export static members
as part of their public interface, which forces
those classes to be reloaded. For example,
java.io.FileDescriptormust be reloaded,
because it exports the public static variables in,
out, and err (stdin, stdout, and stderr, respec-
tively). Other, possibly more efficient, ways to ac-
complish the same thing as reloading exist [14],
but their impact on type safety are not fully un-
derstood. Out of roughly 600 classes in the core
Java libraries, we are able to safely share about 430
(72%) of them. The rest of the classes are reloaded.

3.3 Java Language Issues

A few language compatability issues arose when
building KaffeOS. For example, the Java language
description assumes that all string literals are in-
terned, and that equality can therefore be checked
with a pointer comparison (the �� operator). Un-
fortunately, to maintain such semantics, the in-
terned string table would have to be a global (ker-
nel) data structure—and user processes could allo-
cate strings in an effort to make the kernel run out
of memory. To deal with this problem, we chose
to make separately intern strings for each process.
As a result, the Java language use of pointer com-
parison to check string equality does not work for
strings that were created in different heaps, and the
equals method must be used instead. It is im-
practical for the JVM to hide this semantic change
from applications. However, this issue arises only
in rare situations, and then only in KaffeOS-aware
applications that directly use KaffeOS features.

3.4 Kaffe limitations

Kaffe has relatively poor performance compared
to commercial JVMs, for several reasons. First,
its garbage collector is relatively primitive: it is

a mark-and-sweep collector that is neither gener-
ational nor incremental. Second, it has a simple
just-in-time bytecode compiler that translates each
instruction individually. As a result, many unnec-
essary register spills and reloads are generated, and
the native code that it produces is relatively poor. In
addition, the version upon which KaffeOS is based
does not use inlined synchronization primitives. To
improve stability and performance, we have made
some necessary additions to Kaffe, such as preemp-
tive threading, class unloading, and improved re-
flection support. We have also optimized exception
dispatch and improved the allocator.

4 Results

KaffeOS currently runs under Linux on the x86.
We plan on porting it to the Itsy pocket computer
from Compaq WRL; we have already ported Kaffe
to the Itsy. To demonstrate the effectiveness of Kaf-
feOS, we ran the following experiments:

� We measured three implementations of the
write barrier. We ran the SPEC JVM98 bench-
marks [33] on different configurations of Kaf-
feOS, several versions of Kaffe, and the IBM
JVM, which uses one of the fastest commer-
cial JIT compilers [34] available. We must
note that our results are not comparable with
any published SPEC JVM98 metrics, as the
measurements are not compliant with all of
SPEC’s run rules.

� We ran a servlet engine on KaffeOS to demon-
strate that KaffeOS can prevent denial-of-
service servlets from crashing a server. We
also compared how the number of KaffeOS
processes scales with how the number of OS
processes scales.

Our measurements were all taken on a 500MHz
“Katmai” Pentium III, with 256 Mbytes of
SDRAM and a 100 MHz PCI bus, running Red Hat
Linux 6.2. The processor has a split 32K L1 cache,
and combined 512K L2 cache.

4.1 Write Barrier Implementations
To measure the cost of write barriers in KaffeOS,

we implemented several versions:
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Figure 3: SPEC JVM98 run on various Java platforms. The error bars represent 95% confidence intervals. Each
measurement is the result of three runs, except for jack on Kaffe99, which crashes after one run.

� No Write Barrier. We execute without a write
barrier, and run everything on the kernel heap.

� Heap Pointer. At each heap pointer write, the
write barrier consists of a call to a routine that
finds an object’s heap ID in the object header
and performs the barrier checks. This im-
plementation takes only 25 cycles with a hot
cache, but adds 4 bytes per object.

� No Heap Pointer. At each heap pointer write,
the write barrier consists of a call to a routine
that finds an object’s heap ID by looking at the
page on which the object lies and performs the
barrier checks. This implementation takes 41
cycles with a hot cache.

� Fake Heap Pointer. To measure the impact of
the 4 bytes of padding in the Heap Pointer im-
plementation, we use the third barrier imple-
mentation but add 4 bytes to each object.

The KaffeOS JIT compiler does not yet inline the
write barrier routine. Inlining the write barrier
would not necessarily improve performance, as it
would lead to substantial code expansion.

We ran the SPEC JVM98 benchmark suite on
two versions of Kaffe, and KaffeOS with different
implementations of the write barrier. Kaffe99 is es-
sentially version 1.0b4, which is the code base that
KaffeOS was built on. This version is from May
1999. Kaffe00 is the current version of Kaffe, as
of April 2000. The major performance differences
between the two versions result from a better JIT,
faster exception dispatch, and lightweight locking.
The fast exception dispatch has been integrated into
KaffeOS.

Figure 3 compares the results of our experi-
ments. IBM’s JVM is between 2–5 times faster
than Kaffe00; Kaffe00 is about twice as fast as
Kaffe99. The difference between Kaffe99 and Kaf-
feOS without write barriers is due to the integra-
tion of some of the newer features in Kaffe00 into
KaffeOS. The benefits of adding faster exception
handling shows up strongly in jack because that
benchmark raises many exceptions. The other Kaf-
feOS configurations may gain some performance
benefit because the kernel heap is collected sepa-
rately from the user heap, which approximates the
behavior of a generational garbage collector.
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Benchmark Barriers Time Percent
compress 0.017M 0.001s 0.00%
jess 7.9M 0.65s 0.59%
db 33.0M 2.70s 2.26%
javac 15.5M 1.27s 0.69%
mpegaudio 5.5M 0.45s 0.41%
mtrt 3.0M 0.25s 0.20%
jack 11.6M 0.95s 0.54%

Table 1: Number of write barriers executed for each
SPEC JVM98 benchmark. “Time” is the total CPU cy-
cle cost for the write barrier instructions, assuming the
No Heap Pointer cost of 41 cycles; “percent” is the frac-
tion of the No Write Barrier execution time.

Kaffe99 does not support profiling, so we can
only make educated guesses as to the causes of
write barrier overhead. If we compare the write
barrier implementations to No Write Barrier, the
total cost of the write barrier is about 11%. There
is not a significant performance difference between
the various implementations. The Heap Pointer im-
plementation is slightly slower than the No Heap
Pointer implementation, despite the fact that it
takes fewer CPU cycles per barrier. The Fake
Heap Pointer implementation shows that the Heap
Pointer padding is part of the problem and that
other ways of minimizing the write barrier penalty
should be explored.

Table 1 gives the number of write barriers that
are executed in each of the SPEC benchmarks. If
we compute the time to execute the write barriers
by using the cycle counts for the barriers, we see
that it is a small percentage of the time for each
benchmark. Therefore, almost all of the perfor-
mance difference between KaffeOS and No Write
Barrier is most likely due to “secondary” effects:
cache pollution, cache conflicts, or even changed
garbage collection behavior.

On a better system with a more effective JIT,
the relative cost of using write barriers would in-
crease. On the other hand, a good JIT compiler
could perform several kinds of optimizations to re-
move write barriers. A compiler should be able to
remove redundant write barriers, along the lines of
array bounds checking elimination. It could even
perform method splitting to specialize methods,

so as to remove useless barriers along frequently
used call paths. Again, we can only speculate as
to what the performance penalty for implementing
KaffeOS on the IBM JVM would be. Neverthe-
less, the performance of KaffeOS is much better
than that of the IBM JVM in the presence of unco-
operative applications, despite the raw performance
difference between them.

4.2 Servlet Engine

A Java servlet engine provides an environment
for running Java programs (servlets) at a server.
Their functionality subsumes that of CGI scripts at
Web servers: for example, servlets may create dy-
namic content or run database queries. We use a
MemHog servlet to measure the effects of a denial-
of-service attack. MemHog sits in a loop, repeat-
edly allocates memory, and keeps it from being
garbage-collected.

We compared KaffeOS’s ability to prevent the
MemHog servlet from denying service with that
of IBM’s JVM. We used Apache 1.3.12, JServ 1.1
(Apache’s servlet engine), and a free version of
JSDK 2.0 to run our tests, without modification.
JServ runs servlets in servlet zones, which are vir-
tual servers. A single JServ instance can host one or
more servlet zones. We ran each JServ in its own
KaffeOS process. We compared KaffeOS against
IBM’s JVM, in two configurations: one servlet
zone per JVM (IBM/1), and multiple servlet zones
in one JVM (IBM/n).

When simulating this denial-of-service attack,
we did what a system administrator concerned with
availibility of his services would do: we restarted
the JVM(s) and the KaffeOS process, respectively,
whenever it crashed because of the effects caused
by MemHog. In KaffeOS, MemHog will cause a
single JServ to exit without affecting other JServs.
If each JServ is started in its own IBM JVM, the
whole JVM will eventually crash and be restarted.
If all servlets are run in a single JServ on a sin-
gle IBM JVM, the system runs out of memory
in seemingly random places. This behavior re-
sulted in exceptions that corrupted data structures
that were shared between servlets in the surround-
ing JServ environment. This corruption eventually

10



1

10

100

1000

10000

0 10 20 30 40 50 60 70 80

Servlets

S
e
c
o
n
d
s

IBM/1

IBM/n

KaffeOS

IBM/1,MemHog

IBM/n,MemHog

KaffeOS,MemHog

Figure 4: Scaling behavior of JVMs as the number
of servlets increases. “IBM/1” means one IBM JVM
per servlet; “IBM/n” means n servlets in one JVM.
The “MemHog” measurements replace one of the good
servlets with a MemHog. The y axis is the amount of
time for the non-MemHog servlets to correctly respond
to 1000 client requests.

led to a crash of the JVM, because of the lack of a
user/kernel boundary.

Figure 4 illustrates the results of our experi-
ments; note that the y axis uses a logarithmic
scale. Running a separate KaffeOS process for
each servlet has consistent performance, either with
a MemHog running or without. This graph illus-
trates the most important feature of KaffeOS: that
it can deliver consistent performance, even in the
presence of uncooperative or malicious programs.

The graph shows that running each of the
servlets in a single IBM JVM does not scale.
This failure occurs because starting multiple JVMs
eventually causes the machine to thrash. We esti-
mate that each IBM JVM process takes about 2MB
of virtual memory upon startup. We limited each
JVM’s heap size to 8MB in this configuration. An
attempt to start 100 IBM JVMs rendered the ma-
chine inoperable.

If there are no uncooperative servlets running,
using a single IBM JVM has the best performance.
If there is a MemHog servlet running, such a con-

figuration has worse performance than KaffeOS—
despite the fact that KaffeOS is several times slower
for individual servlets! This degradation is caused
by a lack of isolation between servlets. However,
as the ratio of well-behaved servlets to malicious
servlets increases, the scheduler will yield less of-
ten to the malicious servlet. Consequently, the ser-
vice of IBM/n,MemHog improves as the number of
servlets increases. This effect is an artifact of our
experimental setup and cannot be reasonably used
to defend against denial-of-service attacks.

Finally, we observe a slight service degrada-
tion as the number of KaffeOS processes increases.
This degradation is likely due to inefficiencies in
the user-mode threading system and scheduler.

5 Related Work

We classify the related work into three broad
categories: extensible operating systems, resource
management in operating systems, and Java exten-
sions for resource management.

5.1 Extensible Operating Systems

Extensible operating systems have existed for
many years. Most of them were not designed to
protect against malicious users, although a number
of them support strong security features. None of
them, however, provides strong resource controls.
Pilot [30] and Cedar [36] were two of the earli-
est language-based systems. Their development at
Xerox PARC predates a flurry of research in the
1990’s on such systems. These systems include
Oberon [41] and Juice [18], which are based on
the Oberon language; SPIN [5], which is based
on Modula-3; and Inferno [15], which is based
on a language called Dis. Such systems can be
viewed as single-address-space operating systems
(see Opal [9]) that use type safety for protection.

VINO is a software-based (but not language-
based) extensible system [32] that addresses re-
source management by wrapping kernel extensions
within transactions. When an extension exceeds its
resource limits, it can be safely aborted (even if it
holds kernel locks) and its resources can be recov-
ered. Transactions are a very effective mechanism,
but they are also relatively heavyweight.
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5.2 Resource Management

Several operating systems projects have fo-
cused on quality-of-service issues and real-time
performance guarantees. Nemesis [25] is a
single-address-space OS that focuses on quality-of-
service for multimedia applications. Eclipse [6]
introduced the concept of a reservation domain,
which is a pool of guaranteed resources. Eclipse
provides a guarantee of cumulative service, which
means that processes execute at a predictable rate.
It manages CPU, disk, and physical memory. Our
work is orthogonal, because we examine the soft-
ware mechanisms that are necessary to manage
computational resources.

Recent work on resource management has exam-
ined different forms of abstractions for computa-
tional resources. Banga et al. [3] describe an ab-
straction called resource containers, which are ef-
fectively accounts from which resource usage can
be debited. Resource containers are orthogonal to
a process’ protection domain: a process can con-
tain multiple resource containers, and processes
can share resource containers. In KaffeOS we
have concentrated on the mechanisms to simply al-
low resource management; resource-container-like
mechanisms could be added in the future.

5.3 Java Extensions

Besides KaffeOS, a number of other research
systems have explored (or are currently exploring)
the problem of supporting processes in Java.

The J-Kernel [21] and JRes [11, 12] projects
at Cornell explore resource control issues without
making changes to the Java virtual machine. The J-
Kernel extends Java by supporting capabilities be-
tween processes. These capabilities are indirection
objects that can be used to isolate processes from
each other. JRes extends the J-Kernel with a re-
source management interface whose implementa-
tion is portable across JVMs. The disadvantage
of JRes (as compared to KaffeOS) is that Jres is a
layer on top of a JVM; therefore, it cannot account
for JVM resources consumed on the behalf of ap-
plications. Cornell is also exploring type systems
that can support revocation directly [22].

Alta [37] is a Java virtual machine that enforces

resource controls based on a nested process model.
The nested process model in Alta allows processes
to control the resources and environment of other
processes, including the class namespace. Ad-
ditionally, Alta supports a more flexible sharing
model that allows processes to directly share more
than just objects of primitive types. Like KaffeOS,
Alta is based on Kaffe, and, like KaffeOS, Alta pro-
vides support within the JVM for comprehensive
memory accounting. However, Alta only provides
a single, global garbage collector, so separation of
garbage collection costs is not possible.

Balfanz and Gong [2] describe a multi-
processing JVM developed to explore the secu-
rity architecture ramifications of protecting appli-
cations from each other, as opposed to just pro-
tecting the system from applications. They iden-
tify several areas of the JDK that assume a single-
application model, and propose extensions to the
JDK to allow multiple applications and to provide
inter-application security. The focus of their multi-
processing JVM is to explore the applicability of
the JDK security model to multi-processing, and
they rely on the existing, limited JDK infrastruc-
ture for resource control.

Sun’s original JavaOS [35] was a standalone OS
written almost entirely in Java. It is described as
a first-class OS for Java applications, but appears
to provide a single JVM with little separation be-
tween applications. It was to be replaced by a new
implementation termed “JavaOS for Business” that
also ran only Java applications. “JavaOS for Con-
sumers” is built on the Chorus microkernel OS [31]
to achieve real-time properties needed in embedded
systems. Both of these systems apparently require
a separate JVM for each Java application, and all
run in supervisor mode.

Joust [20], a JVM integrated into the Scout oper-
ating system [28], provides control over CPU time
and network bandwidth. To do so, it uses Scout’s
path abstraction. However, Joust does not support
memory limits on applications.

The Open Group’s Conversant system [4] is an-
other project that modifies a JVM to provide pro-
cesses. It provides each process with a separate
address range (within a single Mach task), a sepa-

12



rate heap, and a separate garbage collection thread.
Conversant does not support sharing between pro-
cesses, unlike KaffeOS, Alta, and the J-Kernel.

6 Conclusions

We have described the design and implementa-
tion of KaffeOS, a Java virtual machine that sup-
ports the operating system abstraction of process.
KaffeOS enables processes to be isolated from each
other, to have their resources controlled, and still
share objects directly. Processes enable the follow-
ing important features:

� The resource demands of Java processes can
be accounted for separately, including mem-
ory consumption and GC time.

� Java processes can be terminated if their re-
source demands are too high, without damag-
ing the system.

� Termination reclaims the resources of the ter-
minated Java process.

These features enable KaffeOS to run untrusted
code safely, because it can prevent simple denial-
of-service attacks that would disable standard
JVMs. The cost of these features, relative to Kaffe,
is reasonable. Because Kaffe’s performance is poor
compared to commercial JVMs, it is difficult to es-
timate the cost of adding such features to a com-
mercial JVM—but we believe that the overhead
should not be excessive. Finally, even though
KaffeOS is substantially slower than commercial
JVMs, it exhibits much better performance scaling
in the presence of uncooperative code.
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